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Statistical analysis challenge for Big Data

• Extraordinary size of data

• Limited computation resource



NSF TRIPODS

• Transdisciplinary Reserach in Principle of Data Science
(TRIPODS)

• Call for proposal for institute of data science

• Address fundamental research and training in the
theoretical foundations of data science

• Focuses on the theoretical foundations of data sciences
• Core algorithmic
• Mathematical
• Statistical principles



NSF TRIPODS: Research focus

• Combinatorial inference on complex structures
• Tradeoffs Between Computational Costs and Statistical

Efficiency
• Randomized numerical linear algebra
• Representation theory and noncommutative harmonic

analysis
• Topological data analysis (TDA) & homological algebra
• Machine learning including deep learning



Some possible strategies

• Divide and conquer

• Bags of little bootstrap

• Mean log-likelihood

• Subdata



Subdata strategy

• “data reduction is perhaps the most critical component in
retrieving information in big data" (Yildirim et al., 2014)

• Selecting a subdata suitable for limited computing resource

• Simple random sampling

• Leveraging algorithm

• Information-Based Optimal Subdata Selecion (IBOSS)



Models considered

• Linear Model
• LASSO

• Logistic Model
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Big Data Linear Regression

Our focus is on reducing the size of n.

Under the assumption of a linear regression model, write

yi = β0 + zT
i β1 + εi , i = 1, ...,n,

or in matrix form

y = β01 + Zβ1 + ε = Xβ + ε.

Here Z is n × p, X = [1 Z], yi ’s are uncorrelated given Z,
response and covariates are continuous, and ε ∼ (0, σ2I).



Computational Cost

Inference under linear regression has a computational
complexity of O(np2), which can be problematic for large n.

Wisely chosen subdata can be used so that useful conclusions
can be obtained with limited computational resources.

If subdata size is k , the overall computational complexity is
O(kp2+??), where ?? depends on the computational complexity
of the algorithm for selecting the subdata.

Existing approaches have focused on (random)
subsampling-based methods, such as uniform sampling (UNIF)
and leveraged sampling (LEV).



Limitation of random sampling approach

The commonly used subsampling-based estimators are
bounded from below in the Loewner ordering by finite quantities
that are at the order of 1/k . These quantities do not go to 0 as
the full data sample size n goes to∞.
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IBOSS Approach

Our approach (Wang, Yang, Stufken 2016): Information-Based
Optimal Subdata Selection (IBOSS)

Rather than sampling, we select subdata judiciously so as to
maximize the Fisher information matrix, in some sense, for the
parameters in the assumed model

For linear regression, under normality and taking σ2 = 1 for
simplicity, the information matrix for β with subdata is

M(δ) =
n∑

i=1

δixixT
i = XT∆X,

with δi an “inclusion” indicator, δ = (δ1, ..., δn) and ∆ = diag(δ)

What is a good choice for δ?



Optimal Design of Experiments

As in optimal design of experiments (DOE), we could maximize
a function of the information matrix

D-optimality: Find δ, subject to
∑

i δi = k , that maximizes
det(M(δ))

A difference with DOE is that we already have data, and must
make a choice for the zij ’s that is consistent with the data

Another challenge is size: we need a computationally efficient
algorithm to find, approximately, an optimal δ



D-optimal design under approximate design theory

Theorem (D-optimality)

For subdata of size k represented by δ,

|M(δ)| ≤ kp+1

4p

p∏
j=1

(z(n)j − z(1)j)
2, (3)

where z(n)j = max{z1j , z2j , ..., znj} and
z(1)j = min{z1j , z2j , ..., znj} are the nth and first order statistics
of z1j , z2j , ..., znj . If the subdata consists of the 2p points
(a1, . . . ,ap)T where aj = z(n)j or z(1)j , j = 1,2, ...,p, each
occurring equally often, then equality holds in (3).



Algorithm for D-optimality

To maximize det(M(δ)), we need to include points with large
and small covariate values

For a fixed subdata size k , using a partition-based selection
algorithm, for j = 1, ...,p, select the k/(2p) largest and smallest
zij -values, and include these points in the subdata

Estimate β by β̂
D

= (XT∆X)−1XT∆y

Computational complexity for selection O(np)

Overall computational complexity O(kp2 + np), or O(np) if
n > kp

Can do this one covariate at a time (no duplication) or in
parallel (possibly less than k points due to duplication)



Toy Example of Subdata Selected by IBOSS

For a full data of size n = 1000 and p = 2, and subdata size
k = 60.
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Figure: Shapes of IBOSS subdata based on different optimality
criteria.

Other optimality criteria require a different algorithm



Theoretical Results

IBOSS can be used no matter what the distribution of the
covariates is ...

... but, for D-optimality, the performance depends on this

Let z1, ..., zn be iid, and consider 3 scenarios:

1 zi ∼ N(µ,Σ)

2 zi ∼ Lognormal(µ,Σ)

3 zi ∼ tν(µ,Σ)

For all scenarios, Var(β̂D
0 |Z) is proportional to 1/k when n→∞

But the story is different for Var(β̂
D
1 |Z) ...



Theoretical Results

Elements of Var(β̂
D
1 |Z) converge to 0 when n→∞ in all cases

(even though the subdata size k is fixed)

For scenario 1 (normal), elements converge to 0 as 1/ log(n)

For scenario 2 (lognormal), the element in position (j1, j2)
converges to 0 as exp(−(σj1 + σj2)

√
2 log(n))

For scenario 3 (t-distribution), elements converge to 0 as n−2/ν

Similar results typically do not hold for subsampling methods



Simulation setup

p = 50, β = 151×1, εi ∼ N(0, σ2) with σ2 = 9, Σ = (.5I(i 6=j)).

zi ’s are generated from the following distributions.
1 Normal, N(0,Σ);
2 Lognormal, exp{N(0,Σ)};
3 t2(0,Σ);
4 Mixture of N(1,Σ), t2(1,Σ), t3(1,Σ), Unif[0,2] and

exp{N(0,Σ)} with equal proportions.
Each simulation was repeated S = 1000 times.

Empirical mean squared errors (MSE) are compared.

Light blue = full data; black = IBOSS with D-optimality; red =
IBOSS with T-optimality; green = uniform sampling; blue =
leveraged sampling



MSE of the intercept estimator with k = 1000
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MSE of the slope estimator with k = 1000
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CPU times for different n and p

Table: CPU times (seconds) for different n with p = 500

n D-opt T -opt UNI LEV FULL
5× 103 1.19 0.35 0.33 0.88 1.44
5× 104 1.36 0.50 0.29 2.20 13.39
5× 105 8.89 2.64 0.31 21.23 132.04

Table: CPU times (seconds) for different p with n = 5× 105

p D-opt T -opt UNI LEV FULL
10 0.19 0.05 0.00 1.94 0.21

100 1.74 0.42 0.02 4.66 6.55
500 9.30 2.53 0.31 21.94 132.47



A Small Example

Data from US Department of Agriculture from Continuing
Survey of Food Intakes by Individuals (CSFII)

Calorie intake as dependent variable, average intake levels of
fat, protein, and carbohydrate, as well as BMI and age as
covariates

So p = 5; with n = 1,827 this is a small example that also
enables comparison to full data analysis

Conclusions from IBOSS with D-optimality and k = 10p = 50
are compared to those from full data



A Small Example

Table: Estimation results for the CSFII data. For the D-OPT IBOSS
method, the subdata size is k = 10p = 50.

Parameter D-OPT FULL
Estimate Std. Error Estimate Std. Error

Intercept 33.545 46.833 45.489 11.883
Age -0.496 1.015 -0.200 0.234
BMI -0.153 0.343 -0.521 0.224
Fat 8.459 0.405 9.302 0.115

Protein 5.080 0.386 4.254 0.127
Carb 3.761 0.106 3.710 0.035



A Small Example
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Figure: Average standard errors for estimating slope parameters for
the CSFII data, using k = 4p, 6p, 10p and 20p. Standard errors are
computed from thousand bootstrap samples.



Interaction model

Suppose the true model is

yi = β0 +
10∑

j=1

zijβj +
10∑

j1 6=j2

zij1zij2βj1j2 + εi , i = 1, ...,n, (4)

Only the main effects are used in selecting subdata.
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(a) Case 1: zi ’s are normal.
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(b) Case 2: zi ’s are lognormal.

Figure: The subdata size k is fixed at k = 1000 and the full data size
n changes



Nonlinear model

The true relationships between the response and the
covariates are nonlinear.

yi = β0 +

p−1∑
j=1

zijβj +
3ez(t)

ip

1 + ez(t)
ip

+ εi , i = 1, ...,n, (WM1)

yi = β0 +

p−1∑
j=1

zijβj + 30 log
(

1 + ez(t)
ip

)
+ εi , i = 1, ...,n,

(WM2)

where z(t)
ip = zipI(zip ≤ 100) + 100I(zip > 100).
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Figure: For model (WM1): the subdata size k is fixed at k = 1000
and the full data size n changes
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(a) Slope parameter
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(b) Intercept parameter
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Figure: For model (WM2): the subdata size k is fixed at k = 1000
and the full data size n changes
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Figure: Average CPU times and MSEs for different subdata sample
size k when the covariates are from a multivariate normal distribution.
The full data size is set to n = 5× 106 with a dimension p = 50.



Comparison with the divide-and-conquer method

Battery et al. (2017) propose to divide the full data into S
subdata sets and the ordinary least squares estimate, say β̂s,
is calculated for each subdata. The DC estimate is the average
of β̂s ’s, i.e., β̄ = S−1∑S

s=1 β̂s.
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(a) Case 1: zi ’s are normal.
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(b) Case 4: zi ’s are a mixture.
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(c) Case 6: zi ’s are t1.
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Figure: k = 1000 and p = 500



Extension to large p

• Variable selection

• Penalized likelihood estimators
• LASSO(least absolute shrinkage and selection operator)
• LARS algorithm (Least-angles Regression)
• SCAD (Smoothly Clipped Absolute Deviation)
• MCP (Minimax Concave Penalty)



Model Setup

• For linear model E(Y ) = Xβ, LASSO estimator is

β̂LASSO = arg min
β
{||Y − Xβ||22/N + λ||β||1}

• λ is usually selected by minimizing cross-validation error
• It takes about 200 seconds for n = 1000 and p = 2000

(Chen and Xie, 2014)
• To develop subset selection method (Xin Wang’s ongoing

work)



Rationale

Knight and Fu (2000) shows that
√

n(β̂n
LASSO − β)→d arg min(V (U)),

where
V (U) = −2UT W + UT CU + λ0UT sign(β)

and W ∼ N(0, σ2C) and C = limn→∞
1
n
∑n

i=1 XiX T
i .



Rationale

√
n(β̂n

LASSO − β)→d C−1
(
−λ0

2
sign(β)−W

)
.

Under certain condition,

||
√

n(β̂n
LASSO − β)||2 →

λ2
0

4
sign(β)T C−2sign(β) + Trace(C−1).



D-optimal Motivated Algorithm – Top Correlated
Only

• Use Pearson’s correlation coefficient to filter variables for
the algorithm – only include columns having largest |ρ|
with Y .

• Use IBOSS approach for the selected variables to select a
subdata



Theoretical Computation Time Comparison

If consider LARS algorithm for lasso regression when n > p,
• LASSO regression with all the N observations will take

O(np2)

• LASSO regression with D-optimality motivated algorithm
will take O(np + kp2)

• LASSO regression with top correlated only D-optimal
algorithm will take O(ns + kp2), s is the number of columns
considered by the algorithm.



Simulation Example 1

Table: Lasso: Time Cost (n = 5× 105, k = 103) – Xij ∼ t(2)

p Full Cor(0.1) UNIF
50 17.9819 0.8195 0.1242

100 45.0246 1.3368 0.2051
500 433.2812 6.0242 3.2958

• -εi ∼ N(0,1), βj ≈ 2
√

log(p)/k/3
• -averaged over 100 runs
• -Cor(0.1) represent top 10% correlated variables are

considered
• -Random is simple random sample approach
• -Full is LASSO with all data



Simulation Results with Fixed k and Varied n



Simulation Results With Fixed n and Varied k
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Logistic Regression Model

Logistic regression

• Prob(Yi = 1|Xi) = P(Xi) = eXT
i β

1+eXT
i β

• β = (β0, · · · , βm)T

• Xi is the covariate vector for response Yi , i = 1, · · · ,n.



Computation challenge for Big Data under logistic
regression models

• Computation cost is O(δnp2)

• China Mobile data example



Levraging type algorithm for logistic regreesion

• Leveraging algorithms: Subsampling algorithms by
assigning sampling probability weight to each dataline.

• Wang et al. (2017) proposed the OSMAC algorithms using
leveraging methods to handle the subsampling work for
logistic model.

• The probability weight is calculated based on the criteria of
A-optimality from optimal design theory.

• Among all of OSMAC algorithms , mVc algorithms is the
most convenient one.

• Probability weight depends on the response variable.



Asymptotic property of the LEV type algorithms

Theorem (Wang et.al(2017))
Let n denote total data size and r denote subsample size. The
leveraging sampling probability for each dataline is set as pii .
Let FN the set of (Y,X). Then under certain conditions specified
in Wang et.al(2016), as n, r →∞, conditional on FN ,

V−
1
2 (β̂sub − β̂)→ N(0, I).

Where β̂sub is the weighted maximum likelihood estimation for
subdata, β̂ is the maximum likelihood estimation for full data
and V = M−1

X VcM−1
X . In this formula, MX = 1

n
∑n

i=1 wi(β̂)xixT
i ,

Vc = 1
rn2

∑n
i=1

(yi−pi (β̂))2xi xT
i

πi
and wi(β) = pi(β)(1− pi(β)).



Asymptotic property of the LEV type algorithms II

Theorem
For all leveraging type algorithms, if the conditions in Wang
et.al (2017) is satisfied and the consistency holds, then the
information matrix I = V−1 can be simplified as

I ≤ r(
n∑

i=1

πixixT
i )

Remarks:
• For simple random sampling, which means πi = 1

n for
i = 1, · · · ,n, I ≤ rM.

• For mVc algorithm (one of the efficient LEV algorithms in
Wang et al(2016) ), πmVc

i = |yi−pi (β̂)|||xi ||∑n
j=1 |yj−pj (β̂)|||xj ||

, I ≤ r(M+o(1)
a ),

where a is positive constant and M = E(xxT )



Properties of the LEV type algorithms

• Easy to understand and to implement the algorithm.

• Subsampling efficiency is good under certain simulation
and real scenarios.

• The probability weight assigned to each data line,
especially for the logistic regression, may depends on
response variable Y.

• When the subsample size r is fixed, then the fisher
information of the popular LEV algorithm is bounded even
when n→∞.



Motivation

• Easy computation and implementation

• Facilitate scientific discoveries from big data with limited
computing resources.

• How to preserve the majority information contained in the
full data?



Information matrix for logistic regression

•

Iξ(β) = n
k∑

i=1

ωiXiΨ(ci)(Xi)
T (5)

where ci = β0 + β1xi1 + . . .+ βmxim, and
Ψ(c) = [P ′(c)]2/[P(c)(1− P(c))].

• D-optimality: Maximize the determinant of the information
matrix.



Local D-optimality and New Subsampling
Algorithm

Theorem (Yang, Zhang and Huang, 2011)
Under logistic model mentioned above, a design ξ∗ is D-optimal
design of parameter β if
ξ∗ = {(C∗l1,1/2m)&(C∗l2,1/2

m), l = 1, · · · ,2m−1}, where
C∗l1 = (1,al,1, · · · ,al,m−1, c∗) and C∗l2 = (1,al,1, · · · ,al,m−1,−c∗)
.

• c∗ minimize function f (c), where f (c) = c−2(Ψ(c))−m−1

and Ψ(c) = [P′(x)]2

P(x)(1−P(x))

• al,i is the boundary of the design space in the i-th
dimension, i = 1, · · · ,m − 1



New Subsampling Algorithm

Inspired by the local D-optimality of logistic model, the following
subsampling algorithm is proposed
Algorithm:

1 Given data set {(Yi ,X T
i ), i = 1, · · · ,n}, first do random

sampling and pick ro sub-samples, fitting the data and get
estimate β̂ = (β̂0, · · · , β̂m)

2 Compute ci = X T
i β̂, pick B =

{i | min{|ci − c∗|, |ci + c∗|} ≤ δ}
3 Inside {(Yi ,X T

i ), i ∈ B}, pick [ r1
2(m−1) ] data lines with

largest value and [ r1
2(m−1) ] data lines with smallest value on

the k-th dimension, k = 1, · · · ,m − 1; combined the picked
datalines as the newly constructed new sub-sample



Advantage of New Algorithm

• Easy implementations

• Subsampling procedure is independent of Y .

• Low computational cost



Some asymptotic property of the new algorithm

• One of the advantage of the new algorithm is that the
fisher information for the picked subsample might goes to
infinity for a fixed subsample size, as long as n→∞.

• Due to the complexity of the computation, we only
investigate into the two dimension case, where
X = (X1,X2)T , β = (β0, β1, β2) and c = X Tβ.

• Define f1 = F−1(1− 1
n ) and f2 = F−1

2 (1− 1
n ), where F1 is

the cdf of the first dimension X1 conditional on |c − c∗| < δ,
and F2 is the cdf of the first dimension X1 conditional on
|c + c∗| < δ



Some asymptotic property of the new algorithm II

Theorem
Consider we have two dimension case, where
c = β0 + x1β1 + x2β2, assume covariate vector X follows
multivariate normal distribution and the new subsampling
algorithm is implemented, then the fisher information I of the
picked data can be written as

I IBOSS =
∑

i is picked

Φi(β)XiX T
i ≥ a

∑
i is picked

XiX T
i = a

(
k I12
IT
12 I22

)

where I12 =
(
[ r
2 ]f1 − [ r

2 ]f2 + o(1) [ r
2 ]f2 − [ r

2 ]f1 + O(1)
)
,

I22 =

 [ r
2 ]((f1)2 + (f2)2) + o(F ) −[ r

2 ]( (f1)2

β2
+ (f2)2

β2
) + O(F )

−[ r
2 ]( (f1)2

β2
+ (f2)2

β2
) + O(F ) [ r

2 ]( (f1)2

β2
2

+ (f2)2

β2
2

) + o(F )

 ,

and F = max(f1, f2)→∞ as n→∞.



Comparison of Computational Cost

• Computaional cost of different approach with fixed sample
size r=1000 and dimension p=7.

Table: Compuational Cost of Different Approach with Different
Data Size

SRS LEV New Algorithm Full Data
N = 500000 0 0.02 0.03 0.40

N = 1000000 0 0.06 0.09 0.79
N = 5000000 0 0.47 0.36 4.09



Comparison of Computational Cost

• Computaional cost of different approach with fixed sample
size r=1000 and data size n=500000.

Table: Compuational Cost of Different Approach with Different
Dimension

SRS LEV New Algorithm Full Data
p = 10 0.001 0.035 0.04 0.397
p = 20 0.004 0.180 0.104 1.378

p = 100 0.02 0.372 0.157 3.261



Simulations Settings

n = 10000, r0 = 200,β is 1 X 7 vector and true value
β0 = (0.5, · · · ,0.5), variance-covariance structure Σ, Σij = 0.5
for i 6= j and Σij = 1 for i = j

• NzNormal: N(µ,Σ) with µ = (0, . . . ,0)

• MzNormal: N(µ,Σ) with µ = (1, . . . ,1)

• Mixed Normal: 1
2N(µ,Σ) + 1

2N(−µ,Σ) with µ = (1, . . . ,1)

• T3



Simulation Results Small Size

Figure: MzNormal
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Simulation Results Small Size

Figure: MixNormal
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Simulations Settings Large Size

n = 500000, r0 = 1000,β is 1 X 7 vector and true value
β0 = (0.5, · · · ,0.5), variance-covariance structure Σ, Σij = 0.5
for i 6= j and Σij = 1 for i = j

• Mixed Normal
• T3



Simulation Results Large Size

Figure: MixNormal
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Irregular X space

• When X is taking value in an irregular space, the
performance of IBOSS maybe limited under this scenario.

• Alternative approach - Directional Derivative Approach



Directional Derivative Approach: Detail

• Step 1: Numerically find the optimal design ξ under the
given range of X values for all dimensions.

• Step 2: Using D-optimality, compute mi = tr(I−1
ξ (IXi − Iξ))

for each dataline Xi .

• Pick out (Xi ,Yi) with the highest r m′is as the subsample.



Directional Derivative Approach: Settings

We now testing the performance of Directional Derivative
Approach under bounded case. In the simulation for this part,
we adjust the distribution center and scale to make X on all
dimension falls in range around [0,6].

• T distribution case: Generate data from T-dist(df=3)
5 + 3.

• Exponent distribution case: Generate data from Exp(1)

• Mixed Normal distribution: Generate data from
0.5N(2,Σ) + 0.5N(3,Σ)

• Normal distribution I: Generate data from N(2,Σ).
• Normal distribution II: Generate data from N(3,Σ).

where Σ is diagonal matrix with all entry as 2. All other settings
is similar to the former scenarios.



Directional Derivative Approach: Results

Table: Performace of Directional Derivative Approach

Distribution N MSEFULL MSELEV MSESRS MSEDDA

T 200000 2.62x10−3 3.00x10−2 7.13x10−2 9.17x10−3

Mixed 200000 4.09x10−4 5.29x10−3 1.03x10−2 2.77x10−3

Normal I 200000 1.08x10−4 1.99x10−3 2.69x10−3 1.00x10−3

Normal II 200000 3.16x10−4 8.67x10−3 7.92x10−3 1.48x10−3

T 400000 1.34x10−3 1.37x10−2 6.98x10−2 6.38x10−3

Mixed 400000 2.15x10−4 2.59x10−3 9.91x10−3 2.41x10−3

Normal I 400000 5.30x10−5 1.14x10−3 2.61x10−3 1.00x10−3

Normal II 400000 1.64x10−4 2.61x10−3 7.92x10−3 1.32x10−3

Exponent 500000 2.25x10−5 1.24x10−3 1.51x10−3 2.30x10−4



Comparison of Computational Cost with
Directional Derivative

• Computaional cost of different approach with fixed sample
size r=5000 and dimension p=3.

Table: Compuational Cost of Different Approach with Different
Data Size

SRS LEV Directional Derivative Full Data
N = 200000 0.001 0.002 0.001 0.016
N = 500000 0.001 0.009 0.006 0.058

N = 1000000 0.003 0.013 0.016 0.101
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